4-1.Complex numbers
normal

माना $v=|z|^2+|z-3|^2+|z-6 i|^2, z \in C$ का न्यूनतम मान $z = z _0$ पर प्राप्त होता है। तब $\left|2 z_0^2-\bar{z}_0^3+3\right|^2+v_0^2$ बराबर है

A

$1000$

B

$1024$

C

$1105$

D

$1196$

(JEE MAIN-2022)

Solution

$z_{0} =\left(\frac{0+3+0}{3}, \frac{0+6+0}{3}\right)=(1,2)$

$v_{0}=|1+2 i|^{2}+|1+2 i-3|^{2}+|1+2 i-6 i|^{2}=30$

$\text { Then }\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$

$=\left|2(1+2 i)^{2}-(1-2 i)^{3}+3\right|^{2}+900$

$=|2(1-4+4 i)-(1-4-4 i)(1-2 i)+3|^{2}+900$

$=|8+6 i|^{2}+900=100+900=1000$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.