Let $A B$ be a chord of length $12$ of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ If tangents drawn to the circle at points $A$ and $B$ intersect at the point $P$, then five times the distance of point $P$ from chord $AB$ is equal to$.......$
$71$
$73$
$72$
$74$
If the line $y = mx + c$be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then the point of contact is
The angle of intersection of the circles ${x^2} + {y^2} - x + y - 8 = 0$ and ${x^2} + {y^2} + 2x + 2y - 11 = 0,$ is
Point $M$ moved along the circle $(x - 4)^2 + (y - 8)^2 = 20 $. Then it broke away from it and moving along a tangent to the circle, cuts the $x-$ axis at the point $(- 2, 0)$ . The co-ordinates of the point on the circle at which the moving point broke away can be :
The number of tangents which can be drawn from the point $(-1,2)$ to the circle ${x^2} + {y^2} + 2x - 4y + 4 = 0$ is
Consider the following statements :
Assertion $(A)$ : The circle ${x^2} + {y^2} = 1$ has exactly two tangents parallel to the $x$ - axis
Reason $(R)$ : $\frac{{dy}}{{dx}} = 0$ on the circle exactly at the point $(0, \pm 1)$.
Of these statements