माना एक वक्र के प्रत्येक बिंदु पर अभिलम्ब, बिन्दु $(a, b)$ से होकर जाते है। यदि यह वक्र बिंदुओं $(3,-3)$ तथा $(4,-2 \sqrt{2})$, से होकर जाता है, तथा $a -2 \sqrt{2} b =3$, तो $\left( a ^{2}+ b ^{2}+ ab \right)$ बराबर है
$6$
$3$
$4$
$9$
माना $y=x+2,4 y=3 x+6$ तथा $3 y=4 x+1$ वृत्त $(\mathrm{x}-\mathrm{h})^2+(\mathrm{y} \mathrm{k})^2=\mathrm{r}^2$ की तीन स्पर्श रेखाएँ हैं, तो $\mathrm{h}+\mathrm{k}$ बराबर है :
एक वृत्त जिसका केन्द्र $(2,3)$ है तथा त्रिज्या $4$ है, रेखा $\mathrm{x}+\mathrm{y}=3$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटता है। यदि $P$ तथा $Q$ पर स्पर्श रेखाएँ बिंदु $S(\alpha, \beta)$ पर मिलती हैं तो $4 \alpha-7 \beta$ बराबर है___________.
बिन्दु $(0,1)$ से होकर जाने वाले तथा परवलय $y = x ^{2}$ को बिन्दु $(2,4)$ पर स्पर्श करने वाले वृत का केन्द्र है
वृत्त ${x^2} + {y^2} - 2x - 4y - 4 = 0$ पर स्पर्श रेखा का समीकरण जो रेखा $3x - 4y - 1 = 0$ पर लम्ब है, होगा
$y - x + 3 = 0$, बिन्दु $\left( {3 + \frac{3}{{\sqrt 2 }},\frac{3}{{\sqrt 2 }}} \right)$ पर किस वृत्त का अभिलम्ब है