Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
  1&1&1 \\ 
  2&b&c \\ 
  4&{{b^2}}&{{c^2}} 
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval

  • [JEE MAIN 2019]
  • A

    $[3,2 + 2^{2/4} ]$

  • B

    $(2 + 2^{3/4},4)$

  • C

    $(2,3)$

  • D

    $[4, 6]$

Similar Questions

If $\omega $ is a complex cube root of unity, then the determinant $\left| {\,\begin{array}{*{20}{c}}2&{2\omega }&{ - {\omega ^2}}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&{a\, + \,b}&{a\, + \,2b}\\{a\, + \,2b}&a&{a\, + \,b}\\{a\, + \,b}&{a\, + \,2b}&a\end{array}\,} \right|$ is

The value of $\left| {\,\begin{array}{*{20}{c}}{265}&{240}&{219}\\{240}&{225}&{198}\\{219}&{198}&{181}\end{array}\,} \right|$ is equal to

$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $

If $a, b, c$ are all different and $\left| {\begin{array}{*{20}{c}}a&{{a^3}}&{{a^4}\, - \,1}\\b&{{b^3}}&{{b^4}\, - \,1}\\c&{{c^3}}&{{c^4}\, - \,1}\end{array}} \right|$ $= 0$ , then :