Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.
$(\vee, \wedge)$
$(\vee, \vee)$
$(\wedge, \wedge)$
$(\wedge, \vee)$
The negation of the statement $''96$ is divisible by $2$ and $3''$ is
Which one of the following Boolean expressions is a tautology?
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
Which of the following is an open statement
Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $( p \rightarrow q ) \Delta( p \nabla q )$ is a tautology. Then