The statement $p → (p \leftrightarrow  q)$ is logically equivalent to :-

  • A

    $(p → q) \vee  (q → p)$

  • B

    $(p → q) \wedge (q →p)$

  • C

    $(q→ p) → (p → q)$

  • D

     $(q → p) \leftrightarrow (p →q)$

Similar Questions

The logically equivalent proposition of $p \Leftrightarrow q$ is

$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is

If $\mathrm{p} \rightarrow(\mathrm{p} \wedge-\mathrm{q})$ is false, then the truth values of $p$ and $q$ are respectively

  • [JEE MAIN 2020]

If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?

  • [JEE MAIN 2023]

Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement

"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as

  • [JEE MAIN 2015]