The statement $p → (p \leftrightarrow q)$ is logically equivalent to :-
$(p → q) \vee (q → p)$
$(p → q) \wedge (q →p)$
$(q→ p) → (p → q)$
$(q → p) \leftrightarrow (p →q)$
$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is
If $\mathrm{p} \rightarrow(\mathrm{p} \wedge-\mathrm{q})$ is false, then the truth values of $p$ and $q$ are respectively
If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement
"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as