ધારો કે સુરેખ સમીકરણ સંહતિ
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
ને અનન્ય ઉએેલ $\left( x ^{*}, y ^{*}, z ^{*}\right)$ છે. જો $\left(\alpha, x ^{*}\right),\left( y ^{*}, \alpha\right)$ અને $\left( x ^{*},- y ^{*}\right)$ તો $\alpha$સમરેખ બિંદુઓ હોય. તો $\alpha$ ની તમામ શક્ય કિંમતોનાં નિરપેક્ષ મૂલ્યોનો સરવાળો ........ છે.
$4$
$3$
$2$
$1$
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
સમીકરણ સંહતિ ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ ના ઉકેલની સંખ્યા મેળવો.
$\lambda$ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણ સંહતિઓ $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ નો ઉકેલ ખાલીગણ થાય.
વાસ્તવિક સંખ્યા $\alpha$ અને $\beta$ માટે આપેલ સમીકરણ સંહતિને ધ્યાનમાં લ્યો.
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$ આપેલ સમીકરણ સંહતિના અસંખ્ય બીજો હોય તો $\alpha+\beta$ ની કિમંત મેળવો.
સમીકરણ સંહતિઓ $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ ને શૂન્યતર ઉકેલ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે ?