$\lambda$ અને $\mu$ ની કિમંત મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ નો ઉકેલગણ ખાલીગણ થાય.
$\lambda=3, \mu \neq 10$
$\lambda \neq 2, \mu=10$
$\lambda=3, \mu=5$
$\lambda=2, \mu \neq 10$
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
જો $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યાઓ છે અને જો સમીકરણો $(a - 1 )x = y + z,$ $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ ને શૂન્યતર ઉકેલ હોય તો $ab + bc + ca$ ની કિમત મેળવો.
જો $p + q + r = 0 = a + b + c$, તો $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|= . . . $
સમીકરણ સંહતિ $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ આપેલ છે, જ્યાં $a, b$ અને $c$ વાસ્તવિક અચળાંકો છે. તો સમીકરણ સંહતિને :
અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે. $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.