Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$
$E_1 $ and $E_3 $ are independent.
$E_1 , E_2$ and $E_3 $ are independent.
$E_1$and $E_2$ are independent.
$E_2 $ and $E_3 $ are independent.
One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is
If $P(A) = P(B) = x$ and $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then $x = $
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $E$ and $F$ independent ?
$\mathrm{E}:$ ' the card drawn is black '
$\mathrm{F}:$ ' the card drawn is a king '
If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $
A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $