माना दो अनभिनत छ: फलकीय पासे $A$ तथा $B$ एक साथ उछाले गये। माना घटना $E_{1}$ पासे $A$ पर चार आना दर्शाती हैं, घटना $E_{2}$ पासे $B$ पर $2$ आना दर्शाती है तथा घटना $E_{3}$ दोनों पासों पर आने वाली संख्याओं का योग विषम दर्शाती है, तो निम्न में से कौन-सा कथन सत्य नहीं है?

  • [JEE MAIN 2016]
  • A

    $E_1 $ तथा $E_3 $ स्वतंत्र हैं।

  • B

    $E_1 , E_2$ तथा $E_3 $ स्वतंत्र हैं।

  • C

    $E_1$ तथा $E_2$ स्वतंत्र हैं।

  • D

    $E_2  $ तथा $E_3 $ स्वतंत्र हैं।

Similar Questions

यदि $E$ व $F$ स्वतंत्र घटनायें इस प्रकार हैं कि $0 < P(E) < 1$ और $0 < P\,(F) < 1,$ तो

  • [IIT 1989]

दो दी हूई घटनाओं $A$ व $B$ के लिए $P\,(A \cap B)$ का मान है

  • [IIT 1988]

दो समसन्तुलित पाँसों को एक ही साथ उछाला जाता है। प्राप्त अंकों का योग विषम अथवा $7$ से कम अथवा दोनों ही हों, इसकी प्रायिकता है

एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हींदी का अखबार भी पढने वाली होने की प्रायिकता ज्ञात कीजिए।

$P ( A )=\frac{3}{5}$ और $P ( B )=\frac{1}{5},$ दिया गया है। यदि $A$ और $B$ परस्पर अपवर्जी घटनाएँ हैं, तो $P ( A$ या $B$ ), ज्ञात कीजिए।