Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12} \text { and } \mathrm{P}(\text { not } \mathrm{A} \text { or not } \mathrm{B})=\frac{1}{4}$.

$\Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4}$

$\Rightarrow P\left((A \cap B)^{\prime}\right)=\frac{1}{4} \quad\left[A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}\right]$

$\Rightarrow 1-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$

$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{4}$               ........... $(1)$

However, $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{1}{2} \cdot \frac{7}{12}=\frac{7}{24} $          .......... $(2)$

Here, $\frac{3}{4} \neq \frac{7}{24}$

$\therefore $ $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$

Therefore, $A$ and $B$ are not independent events.

Similar Questions

If $A$ and $B$ are arbitrary events, then

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.

Given two independent events $A$ and $B$ such $P(A)$ $=0.3,\, P(B)=0.6 .$ Find $P(A$  or $B)$

For any two independent events ${E_1}$ and ${E_2},$ $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ is

  • [IIT 1991]

 $\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?