- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Locus of foot of normal drawn from any focus to variable tangent of hyperbola $4x^2-9y^2-8x- 18y = 41$ will be
A
$x^2 + y^2 - 2x + 2y = 3$
B
$x^2 + y^2 - 2x + 2y = 7$
C
$x^2 + y^2 = 9$
D
$x^2 + y^2 = 5$
Solution
Hyperbola is $ \frac{(x-1)^{2}}{9}-\frac{(y+1)^{2}}{4}=1$ ……..$(i)$
Required locus will be Auxiliary circle of $( i )$
$(x-1)^{2}+(y+1)^{2}=9$
Standard 11
Mathematics