- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If $4{x^2} + p{y^2} = 45$ and ${x^2} - 4{y^2} = 5$ cut orthogonally, then the value of $p$ is
A
$1\over9$
B
$1\over3$
C
$3$
D
$9$
Solution
(D) Slope of $1^{st}$ curve ${\left( {\frac{{dy}}{{dx}}} \right)_I} = – \frac{{4x}}{{py}}$
Slope of $2^{nd}$ curve ${\left( {\frac{{dy}}{{dx}}} \right)_{II}} = \frac{x}{{4y}}$
For orthogonal intersection $\left( { – \frac{{4x}}{{py}}} \right)\,\left( {\frac{x}{{4y}}} \right) = – 1$
==> ${x^2} = p{y^2}$
On solving equations of given curves $x = 3$, $y = 1$
$p(1) = {(3)^2} = 9$
==> $p = 9$.
Standard 11
Mathematics