The equation of the tangent at the point $(a\sec \theta ,\;b\tan \theta )$ of the conic $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is

  • A

    $x{\sec ^2}\theta - y{\tan ^2}\theta = 1$

  • B

    $\frac{x}{a}\sec \theta - \frac{y}{b}\tan \theta = 1$

  • C

    $\frac{{x + a\sec \theta }}{{{a^2}}} - \frac{{y + b\tan \theta }}{{{b^2}}} = 1$

  • D

    None of these

Similar Questions

Let $a$ and $b$ be positive real numbers such that $a > 1$ and $b < a$. Let $P$ be a point in the first quadrant that lies on the hyperbola $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$. Suppose the tangent to the hyperbola at $P$ passes through the point $(1,0)$, and suppose the normal to the hyperbola at $P$ cuts off equal intercepts on the coordinate axes. Let $\Delta$ denote the area of the triangle formed by the tangent at $P$, the normal at $P$ and the $x$-axis. If $e$ denotes the eccentricity of the hyperbola, then which of the following statements is/are $TRUE$?

$(A)$ $1 < e < \sqrt{2}$

$(B)$ $\sqrt{2} < e < 2$

$(C)$ $\Delta=a^4$

$(D)$ $\Delta=b^4$

  • [IIT 2020]

Let $H _{ n }=\frac{ x ^2}{1+ n }-\frac{ y ^2}{3+ n }=1, n \in N$. Let $k$ be the smallest even value of $n$ such that the eccentricity of $H _{ k }$ is a rational number. If $l$ is length of the latus return of $H _{ k }$, then $21 l$ is equal to $.......$.

  • [JEE MAIN 2023]

The locus of a point $P\left( {\alpha ,\beta } \right)$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is

On a rectangular hy perbola $x^2-y^2= a ^2, a >0$, three points $A, B, C$ are taken as follows: $A=(-a, 0) ; B$ and $C$ are placed symmetrically with respect to the $X$-axis on the branch of the hyperbola not containing $A$. Suppose that the $\triangle A B C$ is equilateral. If the side length of the $\triangle A B C$ is $k a$, then $k$ lies in the interval

  • [KVPY 2018]

Let the latus rectum of the hyperbola $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If $\mathrm{b}^2$ is equal to $\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$, where $l$ and $\mathrm{m}$ are co-prime numbers, then $l^2+\mathrm{m}^2+\mathrm{n}^2$ is equal to______________.

  • [JEE MAIN 2024]