Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Equations of a common tangent to the two hyperbolas $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1 $ $\&$  $\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}}$ $= 1 $ is :

A

$y = x +\sqrt {{a^2} - {b^2}} $

B

$y = x -\sqrt {{a^2} - {b^2}} $

C

$y = - x  +\sqrt {{a^2} - {b^2}} $

D

all of the above

Solution

$\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}}= 1 ….(1)$ and $\frac{{{y^2}}}{{{a^2}}} – \frac{{{x^2}}}{{{b^2}}}= 1….(2)$
Tangent to $(1)$ $ y = mx \pm \sqrt {{a^2}{m^2} – {b^2}} \,$ 
If this is also tangent to $\frac{{{x^2}}}{{( – {b^2})}}\,\, – \,\,\frac{{{y^2}}}{{( – {a^2})}}\, = \,1$ 
then $a^2m^2 + b^2 = (-b^2) m^2 – (-a^2) = a^2 -b^2m^2 $ 
$(a^2 -b^2) m^2 = a^2 -b^2 $ 
$m = \pm 1$ 
Hence $4$ common tangents are $y =  \pm \,\,x\,\, \pm \,\sqrt {{a^2} – {b^2}} \,$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.