The locus of centre of the circle which cuts the circles${x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ orthogonally is

  • A

    An ellipse

  • B

    The radical axis of the given circles

  • C

    A conic

  • D

    Another circle

Similar Questions

The equation of the circle which passes through the intersection of ${x^2} + {y^2} + 13x - 3y = 0$and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and whose centre lies on $13x + 30y = 0$ is

The circles ${x^2} + {y^2} - 10x + 16 = 0$ and ${x^2} + {y^2} = {r^2}$ intersect each other in two distinct points, if

  • [IIT 1994]

The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 y=0$ having its centre on the line, $2 x-3 y+12=0$, also passes through the point

  • [JEE MAIN 2020]

The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :

The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is