Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is
$3.6$
$5$
$5.6$
None of these
If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$
The value of $\sqrt {(\log _{0.5}^24)} $ is
If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is
The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$