$\log ab - \log |b| = $
$\log a$
$\log |a|$
$ - \log a$
None of these
(b) $\log ab – \log |b| = \log \left( {{{ab} \over {|b|}}} \right) = \log |a|$.
If ${\log _{0.3}}(x – 1) < {\log _{0.09}}(x – 1)$ then $x \ne 1$ lies in
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is
The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .
If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.