$\log ab - \log |b| = $
$\log a$
$\log |a|$
$ - \log a$
None of these
(b) $\log ab – \log |b| = \log \left( {{{ab} \over {|b|}}} \right) = \log |a|$.
If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to
If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ……. + \frac{1}{{{{\log }_{1983}}n}}$ is equal to
The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.