Basic of Logarithms
hard

The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is

A

$\left( { - \infty ,\,\, - {5 \over 2}} \right] \cup (0, + \infty )$

B

$\left[ {{5 \over 2}, + \,\infty } \right)$

C

$( - \infty ,\, - 2) \cup (0, + \,\infty )$

D

None of these

Solution

(a) ${\log _{0.2}}{{x + 2} \over x} \le 1$…..$(i)$

For log to be defined, ${{x + 2} \over x} > 0$ $ \Rightarrow $$x > 0$ or $x < – 2$

Now from $(i),$ ${\log _{0.2}}{{x + 2} \over x} \le {\log _{0.2}}0.2$

$ \Rightarrow $${{x + 2} \over x} \ge 0.2$ …..$(ii)$

Case $(i)$ $x > 0$

From $(ii),$ $x + 2 \ge 0.2x$

$ \Rightarrow $ $0.8x \ge – 2$

$ \Rightarrow $$x \ge – {5 \over 2}$.

Case $(ii)$ $x < – 2$

From $(ii),$ $x + 2 \le 0.2x$$ \Rightarrow $$0.8x \le – 2$$ \Rightarrow $$x \le – {5 \over 2}$

$ \Rightarrow $$x \in (0,\,\infty )\, \cup \,\left( { – \infty ,\, – {5 \over 2}} \right]$; 

$\therefore x \in \left( { – \infty ,\, – {5 \over 2}} \right] \cup (0,\,\infty )$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.