The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is
$\left( { - \infty ,\,\, - {5 \over 2}} \right] \cup (0, + \infty )$
$\left[ {{5 \over 2}, + \,\infty } \right)$
$( - \infty ,\, - 2) \cup (0, + \,\infty )$
None of these
The value of ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9$ is
The number of solution of ${\log _2}(x + 5) = 6 - x$ is
$\log ab - \log |b| = $
The value of $\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ is. . . . . . .
If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is