The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is

  • A

    $\left( { - \infty ,\,\, - {5 \over 2}} \right] \cup (0, + \infty )$

  • B

    $\left[ {{5 \over 2}, + \,\infty } \right)$

  • C

    $( - \infty ,\, - 2) \cup (0, + \,\infty )$

  • D

    None of these

Similar Questions

Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?

  • [KVPY 2017]

If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is

If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to

If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to