In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $A \subset B$ and $B \in C,$ then $A \in C$
Write the set $A = \{ 1,4,9,16,25, \ldots .\} $ in set-builder form.
Find the pairs of equal sets, if any, give reasons:
$A = \{ 0\} ,$
$B = \{ x:x\, > \,15$ and $x\, < \,5\} $
$C = \{ x:x - 5 = 0\} ,$
$D = \left\{ {x:{x^2} = 25} \right\}$
$E = \{ \,x:x$ is an integral positive root of the equation ${x^2} - 2x - 15 = 0\,\} $
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$10 \, .........\, A $
Two finite sets have $m$ and $n$ elements. The total number of subsets of the first set is $56$ more than the total number of subsets of the second set. The values of $m$ and $n$ are