જો $A=\varnothing $ હોય, તો $P(A)$ ને કેટલા ઘટકો હશે ?
ગણ સાન્ત કે અનંત છે તે નક્કી કરો : $\{ x:x \in N$ અને $x$ અયુગ્મ પૂર્ણાક છે. $\} $
ગણને યાદીની રીતે લખો : $\mathrm{E} = \mathrm{TRIGONOMETRY}$ શબ્દના મુળાક્ષરોનો ગણ
$A$ અને $B$ એ શુન્યેતર બે ગણ છે અને ગણ $A$ એ ગણ $B$ નો ઉચિત ઉપગણ છે જો $n(A) = 4$, હોય તો $n(A \Delta B)$ ની ન્યૂનતમ કિમત મેળવો. (જ્યાં $\Delta$ એ ગણ $A$ અને ગણ $B$ નો સંમિત તફાવત છે.)
$\mathrm{A = B}$ છે કે નહિ ? : $A = \{ 2,4,6,8,10\} ;B = \{ x:x$ એ યુગ્મ ધન પૂણક છે અને $x\, \le \,10\} $