Match List $I$ with List $II$
List $I$ | List $II$ |
$(A)$ Young's Modulus $(Y)$ | $(I)$ $\left[ M L ^{-1} T ^{-1}\right]$ |
$(B)$ Co-efficient of Viscosity $(\eta)$ | $(II)$ $\left[ M L ^2 T ^{-1}\right]$ |
$(C)$ Planck's Constant $(h)$ | $(III)$ $\left[ M L ^{-1} T ^{-2}\right]$ |
$(D)$ Work Function $(\phi)$ | $(IV)$ $\left[ M L ^2 T ^{-2}\right]$ |
Choose the correct answer from the options given below:
$(A)-(II), (B)-(III), (C)-(IV), (D)-(I)$
$(A)-(III), (B)-(I), (C)-(II), (D)-(IV)$
$(A)-(I), (B)-(III), (C)-(IV), (D)-(II)$
$(A)-(I), (B)-(II), (C)-(III), (D)-(IV)$
In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
List $I$ | List $II$ |
$A$ Torque | $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$ |
$B$ Magnetic fileld | $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$ |
$C$ Magnetic moment | $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$ |
$D$ Permeability of free space | $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$ |
If the speed of light $(c)$, acceleration due to gravity $(g)$ and pressure $(p)$ are taken as the fundamental quantities, then the dimension of gravitational constant is