Match List$-I$ with List$-II$

List$-I$ List$-II$
$(a)$ $h$ (Planck's constant) $(i)$ $\left[ M L T ^{-1}\right]$
$(b)$ $E$ (kinetic energy) $(ii)$ $\left[ M L ^{2} T ^{-1}\right]$
$(c)$ $V$ (electric potential) $(iii)$ $\left[ M L ^{2} T ^{-2}\right]$
$(d)$ $P$ (linear momentum) $( iv )\left[ M L ^{2} I ^{-1} T ^{-3}\right]$

Choose the correct answer from the options given below

  • [JEE MAIN 2021]
  • A

    $( a ) \rightarrow( iii ),( b ) \rightarrow( iv ),( c ) \rightarrow( ii ),( d ) \rightarrow( i )$

  • B

    $(a) \rightarrow( ii ),( b ) \rightarrow( iii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$

  • C

    $(a)\rightarrow( i ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( iii )$

  • D

    $(a)\rightarrow( iii ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$

Similar Questions

The velocity of a freely falling body changes as ${g^p}{h^q}$ where g is acceleration due to gravity and $h$ is the height. The values of $p$ and $q$ are

Which of the following is dimensional formula for viscosity?

$\left(P+\frac{a}{V^2}\right)(V-b)=R T$ represents the equation of state of some gases. Where $P$ is the pressure, $V$ is the volume, $T$ is the temperature and $a, b, R$ are the constants. The physical quantity, which has dimensional formula as that of $\frac{b^2}{a}$, will be

  • [JEE MAIN 2023]

Dimensional formula for volume elasticity is

The displacement of a progressive wave is represented by $y = A\,sin \,(\omega t - kx)$ where $x$ is distance and t is time. Write the dimensional formula of  $(i)$ $\omega $ and $(ii)$ $k$.