Match List$-I$ with List$-II$
List$-I$ | List$-II$ |
$(a)$ $h$ (Planck's constant) | $(i)$ $\left[ M L T ^{-1}\right]$ |
$(b)$ $E$ (kinetic energy) | $(ii)$ $\left[ M L ^{2} T ^{-1}\right]$ |
$(c)$ $V$ (electric potential) | $(iii)$ $\left[ M L ^{2} T ^{-2}\right]$ |
$(d)$ $P$ (linear momentum) | $( iv )\left[ M L ^{2} I ^{-1} T ^{-3}\right]$ |
Choose the correct answer from the options given below
$( a ) \rightarrow( iii ),( b ) \rightarrow( iv ),( c ) \rightarrow( ii ),( d ) \rightarrow( i )$
$(a) \rightarrow( ii ),( b ) \rightarrow( iii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$
$(a)\rightarrow( i ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( iii )$
$(a)\rightarrow( iii ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$
The velocity of a freely falling body changes as ${g^p}{h^q}$ where g is acceleration due to gravity and $h$ is the height. The values of $p$ and $q$ are
Which of the following is dimensional formula for viscosity?
$\left(P+\frac{a}{V^2}\right)(V-b)=R T$ represents the equation of state of some gases. Where $P$ is the pressure, $V$ is the volume, $T$ is the temperature and $a, b, R$ are the constants. The physical quantity, which has dimensional formula as that of $\frac{b^2}{a}$, will be
Dimensional formula for volume elasticity is
The displacement of a progressive wave is represented by $y = A\,sin \,(\omega t - kx)$ where $x$ is distance and t is time. Write the dimensional formula of $(i)$ $\omega $ and $(ii)$ $k$.