Match List$-I$ with List$-II$
List$-I$ | List$-II$ |
$(a)$ $h$ (Planck's constant) | $(i)$ $\left[ M L T ^{-1}\right]$ |
$(b)$ $E$ (kinetic energy) | $(ii)$ $\left[ M L ^{2} T ^{-1}\right]$ |
$(c)$ $V$ (electric potential) | $(iii)$ $\left[ M L ^{2} T ^{-2}\right]$ |
$(d)$ $P$ (linear momentum) | $( iv )\left[ M L ^{2} I ^{-1} T ^{-3}\right]$ |
Choose the correct answer from the options given below
$( a ) \rightarrow( iii ),( b ) \rightarrow( iv ),( c ) \rightarrow( ii ),( d ) \rightarrow( i )$
$(a) \rightarrow( ii ),( b ) \rightarrow( iii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$
$(a)\rightarrow( i ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( iii )$
$(a)\rightarrow( iii ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$
Consider a simple pendulum, having a bob attached to a string, that oscillates under the action of the force of gravity. Suppose that the period of oscillation of the simple pendulum depends on its length $(l)$, mass of the bob $(m)$ and acceleration due to gravity $(g)$. Derive the expression for its time period using method of dimensions.
Given that $v$ is speed, $r$ is the radius and $g$ is the acceleration due to gravity. Which of the following is dimensionless
If the velocity of light $c$, universal gravitational constant $G$ and planck's constant $h$ are chosen as fundamental quantities. The dimensions of mass in the new system is
Time period $T\,\propto \,{P^a}\,{d^b}\,{E^c}$ then value of $c$ is given $p$ is pressure, $d$ is density and $E$ is energy
Write principle of Homogeneity of dimension.