Match List $I$ with List $II$
List $I$ List $II$
$A$ Torque  $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$
$B$ Magnetic fileld  $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$
$C$ Magnetic moment $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$
$D$ Permeability of free  space $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$
Choose the correct answer from the options given below :

  • [JEE MAIN 2024]
  • A
    $A-I, B-III, C-II, D-IV$
  • B
    $A-IV, B-III, C-II, D-I$
  • C
     $A-III, B-I, C-II, D-IV$
  • D
    $A-IV, B-II, C-III, D-I$

Similar Questions

Write and explain principle of homogeneity. Check dimensional consistency of given equation.

A force is represented by $\mathrm{F}=a \mathrm{x}^2+\mathrm{bt}^{1 / 2}$. Where $\mathrm{x}=$ distance and $\mathrm{t}=$ time. The dimensions of $\mathrm{b}^2 / \mathrm{a}$ are :

  • [JEE MAIN 2024]

Time period $T\,\propto \,{P^a}\,{d^b}\,{E^c}$  then value of $c$ is  given $p$ is pressure, $d$ is density and $E$ is energy

Using dimensional analysis, the resistivity in terms of fundamental constants $h, m_{e}, c, e, \varepsilon_{0}$ can be expressed as

  • [KVPY 2017]

The dimensions of the area $A$ of a black hole can be written in terms of the universal gravitational constant $G$, its mass $M$ and the speed of light $c$ as $A=G^\alpha M^\beta c^\gamma$. Here,

  • [KVPY 2015]