Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :
List $I$ | List $II$ |
$P.$ Boltzmann constant | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ Coefficient of viscosity | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ Planck constant | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ Thermal conductivity | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
$\quad 3 \quad 1 \quad 2 \quad 4 $
$\quad 3 \quad 2 \quad 1 \quad 4 $
$\quad 4 \quad 2 \quad 1 \quad 3 $
$\quad 4 \quad 1 \quad 2 \quad 3 $
If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by
Electric field in a certain region is given by $\overrightarrow{ E }=\left(\frac{ A }{ x ^2} \hat{ i }+\frac{ B }{ y ^3} \hat{ j }\right)$. The $SI$ unit of $A$ and $B$ are
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
If the velocity of light $c$, universal gravitational constant $G$ and planck's constant $h$ are chosen as fundamental quantities. The dimensions of mass in the new system is