Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :

List $I$ List $II$
$P.$ Boltzmann constant $1.$ $\left[ ML ^2 T ^{-1}\right]$
$Q.$ Coefficient of viscosity $2.$ $\left[ ML ^{-1} T ^{-1}\right]$
$R.$ Planck constant $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$
$S.$ Thermal conductivity $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$

Codes: $ \quad \quad P \quad Q \quad R \quad S $ 

  • [IIT 2013]
  • A

    $\quad 3 \quad 1 \quad 2 \quad 4 $

  • B

    $\quad 3 \quad 2 \quad 1 \quad 4 $

  • C

    $\quad 4 \quad 2 \quad 1 \quad 3 $

  • D

    $\quad 4 \quad 1 \quad 2 \quad 3 $

Similar Questions

If pressure $P$, velocity $V$ and time $T$ are taken as fundamental physical quantities, the dimensional formula of force is

In the expression $P = El^2m^{-5}G^{-2}$, $E$, $l$, $m$ and $G$ denote energy, mass, angular momentum and gravitational constant respectively. Show that $P$ is a dimensionless quantity.

The conversion of $1 \;MW$ power in a new system having basic unit of mass, length and time as $10 \;kg , 1 \;dm$ and $1 \;minute$ respectively is:

A force defined by $F=\alpha t^2+\beta t$ acts on a particle at a given time $t$. The factor which is dimensionless, if $\alpha$ and $\beta$ are constants, is:

  • [NEET 2024]

In Vander Waals equation $\left[ P +\frac{ a }{ V ^{2}}\right][ V - b ]= RT$; $P$ is pressure, $V$ is volume, $R$ is universal gas constant and $T$ is temperature. The ratio of constants $\frac{a}{b}$ is dimensionally equal to .................

  • [JEE MAIN 2022]