सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची $I$ | सूची $II$ |
$P.$बोल्ट्समान नियतांक | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ श्यानता गुणांक | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ प्लांक नियतांक | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ ऊष्माता चालक | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
$\quad 3 \quad 1 \quad 2 \quad 4 $
$\quad 3 \quad 2 \quad 1 \quad 4 $
$\quad 4 \quad 2 \quad 1 \quad 3 $
$\quad 4 \quad 1 \quad 2 \quad 3 $
यदि $e$ इलेक्ट्रॉनिक आवेश, $c$ प्रकाश की मुक्त आकाश में चाल तथा $h$ प्लाँक नियतांक है, तो $\frac{1}{4 \pi \varepsilon_{0}} \frac{| e |^{2}}{h c}$ की विमाएँ होंगी।
सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
यदि $\mathrm{R}, \mathrm{X}_{\mathrm{L}}$. तथा $\mathrm{X}_{\mathrm{C}}$ क्रमशः प्रतिरोध, प्रेरकीय प्रतिघात एवं धारतीय प्रतिघात को निरूपित करते है तो निम्न में से कौनसा विमाहीन है?
कुछ गैसों की अवस्था की समीकरण $\left(P+\frac{a}{V^2}\right)$ $(V-b)=R T$ से प्रदर्शित होती है, जहाँ $P$ दाब, $\mathrm{V}$ आयतन, $\mathrm{T}$ ताप तथा $a, b, R$ नियतांक हैं। $\frac{b^2}{a}$ के समतुल्य विमीय सूत्र वाली भौतिक राशि होगी: