सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :

सूची $I$ सूची $II$
$P.$बोल्ट्समान नियतांक $1.$ $\left[ ML ^2 T ^{-1}\right]$
$Q.$ श्यानता गुणांक $2.$ $\left[ ML ^{-1} T ^{-1}\right]$
$R.$ प्लांक नियतांक $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$
$S.$ ऊष्माता चालक $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$

Codes: $ \quad \quad P \quad Q \quad R \quad S $ 

  • [IIT 2013]
  • A

    $\quad 3 \quad 1 \quad 2 \quad 4 $

  • B

    $\quad 3 \quad 2 \quad 1 \quad 4 $

  • C

    $\quad 4 \quad 2 \quad 1 \quad 3 $

  • D

    $\quad 4 \quad 1 \quad 2 \quad 3 $

Similar Questions

निम्नलिखित में से कौन सी राशि विमा विहीन है?

  • [JEE MAIN 2021]

यदि वेग $v,$ त्वरण $A$ तथा बल $F$ को मूल राशियाँ मान लिया जाए, तो कोणीय संवेग का $v,\,A$ और $F$ के पदों में विमीय सूत्र होगा

ऊष्मा या ऊर्जा का मात्रक कैलोरी है और यह लगभग $4.2\, J$ के बराबर है, जहां $1\, J =1\, kg\, m ^{2} s ^{-2}$ मान लीजिए कि हम मात्रकों की कोई ऐसी प्रणाली उपयोग करते हैं जिससे द्रव्यमान का मात्रक $\alpha\, kg$ के बराबर है, लंबाई का मात्रक $\beta m$ के बराबर है, समय का मात्रक $\gamma s$ के बराबर है । यह प्रदर्शित कीजिए कि नए मात्रकों के पदों में कैलोरी का परिमाण $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ है ।

दो राशियों $A$ तथा $B$ की विमायें भिन्न है। निम्न में से किस गणितीय संक्रिया की भौतिक सार्थकता हैं

एक विमारहित राशि को इलेक्ट्रॉनिक आवेश $e$, मुक्त आकाश की विद्युतशीलता (permittivity) $\varepsilon_0$, प्लांक स्थिरांक $h$ तथा प्रकाश की चाल $c$ से व्यक्त करते हैं। यदि इस विमारहित राशि को $e^\alpha \varepsilon_0^\beta h^\gamma c^\delta$ से निर्दिष्ट किया जाता है तथा $n$ एक अशून्य पूर्णांक है तो $(\alpha, \beta, \gamma, \delta)$ का मान होगा,

  • [IIT 2024]