सूची$-I$ को सूची$-II$ से मिलाइए।
सूची$-I$ | सूची$-II$ |
$(a)$ $h$ (प्लांक नियतांक) | $(i)$ $\left[ M L T ^{-1}\right]$ |
$(b)$ $E$ (गतिज ऊर्जा) | $(ii)$ $\left[ M L ^{2} T ^{-1}\right]$ |
$(c)$ $V$ (विद्युत विभव) | $(iii)$ $\left[ M L ^{2} T ^{-2}\right]$ |
$(d)$ $P$ (रैखिक संवेग) | $( iv )\left[ M L ^{2} I ^{-1} T ^{-3}\right]$ |
नीचे दिए गए विकल्पों में से सही उत्तर चुनिए।
$( a ) \rightarrow( iii ),( b ) \rightarrow( iv ),( c ) \rightarrow( ii ),( d ) \rightarrow( i )$
$(a) \rightarrow( ii ),( b ) \rightarrow( iii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$
$(a)\rightarrow( i ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( iii )$
$(a)\rightarrow( iii ),( b ) \rightarrow( ii ),( c ) \rightarrow( iv ),( d ) \rightarrow( i )$
तार के कम्पन की आवृत्ति $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ से दी जाती है। यहाँ $p$ तार के लूपों की संख्या एवं l लम्बाई है। $ m$ का विमीय सूत्र होगा
भौतिक स्थिरांकों के निम्नलिखित संयोजन से (अपने साधारण प्रयोग में लिये गये चिन्हों द्वारा प्रदर्शित), केवल वह संयोजन, जो कि इकाइयों के विभित्र निकायों में एक ही मान रखता है
विधुतचुम्बकीय सिद्धांत के अनुसार विद्युत् और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि [ $\left.\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुटांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ SI मात्रकों (units) में दी गयी हैं ।
($1$) $[E]$ और $[B]$ के बीच में संबंध है
$(A)$ $[ E ]=[ B ][ L ][ T ]$ $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$ $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$ $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$
($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है
$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$ $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$ $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$ $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
दो परमाणुओं के मध्य अन्योन्यक्रिया बल सम्बन्ध $F =\alpha \beta \exp \left(-\frac{ x ^{2}}{\alpha kt }\right)$ से दिया जाता है जहाँ $x$ दूरी है, $k$ बोल्ट्जमैन नियतांक तथा $T$ तापमान है और $\alpha$ तथा $\beta$ दो स्थिरांक हैं। $\beta$ की विमा होगी।