The dimensional formula ${M^0}{L^2}{T^{ - 2}}$ stands for
Torque
Angular momentum
Latent heat
Coefficient of thermal conductivity
The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.
If $G$ is universal gravitation constant and $g$ is acceleration due to gravity, then dimensions of $\frac{G}{g}$ will be ...................
Define dimensional formula and dimensional equation by using suitable example.
Match List$-I$ with List$-II.$
List$-I$ | List$-II$ |
$(a)$ Capacitance, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ Permittivity of free space, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ Permeability of free space, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ Electric field, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |
Choose the correct answer from the options given below
Match List$-I$ with List$-II.$
List$-I$ | List$-II$ |
$(a)$ Magnetic Induction | $(i)$ ${ML}^{2} {T}^{-2} {A}^{-1}$ |
$(b)$ Magnetic Flux | $(ii)$ ${M}^{0} {L}^{-1} {A}$ |
$(c)$ Magnetic Permeability | $(iii)$ ${MT}^{-2} {A}^{-1}$ |
$(d)$ Magnetization | $(iv)$ ${MLT}^{-2} {A}^{-2}$ |
Choose the most appropriate answer from the options given below: