- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Maximum length of chord of the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, such that eccentric angles of its extremities differ by $\frac{\pi }{2}$ is
A
$4$
B
$2\sqrt 2 $
C
$16$
D
$8$
Solution
$a=2 \sqrt{2}, b=2$
Let $P \equiv(2 \sqrt{2} \cos \theta, 2 \sin \theta)$
and $Q \equiv(-2 \sqrt{2} \sin \theta, 2 \cos \theta)$
$\therefore(P Q)^{2}=8(\cos \theta+\sin \theta)^{2}+4(\sin \theta-\cos \theta)^{2}$
$=12+4 \sin 2 \theta \leq 16$
$(P Q)_{\max }=4$
Maximum value of sin function is $1 .$
Standard 11
Mathematics