If $a$ and $c$ are positive real numbers and the ellipse $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ has four distinct points in common with the circle $x^2 + y^2 = 9a^2$ , then
$9ac -9a^2 - 2c^2 <0$
$6ac + 9a^2 - 2c^2 < 0$
$9ac -9a^2 -2c^2 > 0$
$6ac +9a^2 - 2c^2 >0$
If the variable line $y = kx + 2h$ is tangent to an ellipse $2x^2 + 3y^2 = 6$ , then locus of $P(h, k)$ is a conic $C$ whose eccentricity equals
The equation of an ellipse whose eccentricity is $1/2$ and the vertices are $(4, 0)$ and $(10, 0)$ is
If the radius of the largest circle with centre $(2,0)$ inscribed in the ellipse $x^2+4 y^2=36$ is $r$, then $12 r^2$ is equal to
The locus of a variable point whose distance from $(-2, 0)$ is $\frac{2}{3}$ times its distance from the line $x = - \frac{9}{2}$, is
An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is