${(1 + 3x + 3{x^2} + {x^3})^6}$ के प्रसार में मध्य पद है
चौथा
तीसरा
दसवाँ
इनमें से कोई नहीं
माना $\left( x +\frac{ a }{ x ^{2}}\right)^{ n }, x \neq 0$, के प्रसार में तीसरे, चौथे तथा पाँचवें पदों के गुणांक $12: 8: 3$ के अनुपात में है। तो इस प्रसार में $x$ से स्वतंत्र पद है ......... |
यदि ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ के विस्तार में मध्य पद $924{x^6}$ हो, तो $n = $
यदि $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ के $x$ की घातों में प्रसार में $x^{3}$ तथा $x^{4}$, दोनों के गुणांक शून्य हैं, तो $(a, b)$ बराबर है :
यदि $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ के प्रसार में आरंभ से $5$ वें और अंत से $5$ वें पद का अनुपात $\sqrt{6}: 1$ हो तो $n$ ज्ञात कीजिए।
यदि द्विपद ${\left( {\sqrt[3]{2} + \frac{1}{{\sqrt[3]{3}}}} \right)^n}$ है और यदि प्रारम्भ से सातवें पद और अन्त से सातवें पद का अनुपात $\frac{1}{6}$ हो, तो $n = $