यदि $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ के विस्तार में आरंभ से पाँचवे पद का अंत से पाँचवे पद से अनुपात $\sqrt{6}: 1$ है, तब आरंभ से तीसरा पद है :
$60 \sqrt{2}$
$60 \sqrt{3}$
$30 \sqrt{2}$
$30 \sqrt{3}$
${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा
व्यंजक $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ के विस्तार में ${x^k}$ का गुणांक $(0 \le k \le n)$ है
${(1 + x)^{43}}$ के विस्तार में $(2r + 1)$ वें पद और $(r + 2)$ वें पद के गुणांक बराबर हैं, तब $r$ का मान होगा
$\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद है
निम्नलिखित प्रसारों में मध्य पद ज्ञात कीजिए
$\left(3-\frac{x^{3}}{6}\right)^{7}$