Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is
$1$
$1/2$
$2$
$\sqrt 2 $
The amplitude of $\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 + i}}$ is
If $5 + ix^3y^2$ and $x^3 + y^2 + 6i$ are conjugate complex numbers and arg $(x + iy) = \theta $ , then ${\tan ^2}\,\theta $ is equal to
Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$
If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is
If $x+i y=\frac{a+i b}{a-i b},$ prove that $x^{2}+y^{2}=1$