4-1.Complex numbers
easy

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

A

${\mathop{\rm Re}\nolimits} (z) > 0$

B

${\mathop{\rm Re}\nolimits} (z) < 0$

C

${\mathop{\rm Re}\nolimits} (z) > 2$

D

None of these

(AIEEE-2002) (IIT-1982)

Solution

(d) Given inequality $|z – 4|\, < \,|z – 2|$
$ \Rightarrow $ $|z – 4{|^2} < \,|z – 2{|^2} \Rightarrow {(x – 4)^2} + {y^2} < {(x – 2)^2} + {y^2}$
==> $4x > 12 \Rightarrow {\mathop{\rm Re}\nolimits} (z) > 3$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.