The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by
${\mathop{\rm Re}\nolimits} (z) > 0$
${\mathop{\rm Re}\nolimits} (z) < 0$
${\mathop{\rm Re}\nolimits} (z) > 2$
None of these
If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$
If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies
Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$. If $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ then
If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is: