The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by
${\mathop{\rm Re}\nolimits} (z) > 0$
${\mathop{\rm Re}\nolimits} (z) < 0$
${\mathop{\rm Re}\nolimits} (z) > 2$
None of these
Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is
If $arg\,(z) = \theta $, then $arg\,(\overline z ) = $
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to
If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to
If $z$ is a complex number, then which of the following is not true