Which of the following is not a statement
Give me a glass of water
Asia is a continent
The earth revolved round the sun
The number $6$ has two prime factors $2, 3$
The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
$\sim (p \wedge q)$ is equal to .....
Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.