- Home
- Standard 11
- Mathematics
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.
$(\sim p ) \wedge q$
$p \wedge(\sim q )$
$(\sim p) \vee(\sim q)$
$(\sim p) \wedge(\sim q)$
Solution
$\sim( p \leftrightarrow( q \rightarrow p ))$
$\sim( p \leftrightarrow q )=( p \wedge \sim q ) \vee( q \wedge \sim p )$
$\sim( p \leftrightarrow( q \rightarrow p ))=( p \wedge \sim( q \rightarrow p )) \vee(( q \rightarrow p ) \wedge \sim p )$
$( p \wedge \sim( q \rightarrow p ))= p \wedge( q \wedge \sim p )=( p \wedge \sim p ) \wedge q = c$
$( q \rightarrow p ) \wedge \sim p =(\sim q \vee p ) \wedge \sim p =\sim p \wedge(\sim q \vee p )$ $=(\sim p \wedge \sim q ) \vee(\sim p \wedge p )=\sim p \wedge \sim q$
$\sim( p \leftrightarrow( q \rightarrow p ))= c \vee(\sim p \wedge \sim q )=\sim p \wedge \sim q$