The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are
$1$
$2$
$3$
$4$
If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
If the sum of all the roots of the equation $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ is $\log _{ e } P$, then $p$ is equal to
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
The number of solution$(s)$ of the equation $2^x = x^2$ is
Let $\alpha, \beta ; \alpha>\beta$, be the roots of the equation $x^2-\sqrt{2} x-\sqrt{3}=0$. Let $P_n=\alpha^n-\beta^n, n \in N$. Then $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$ is equal to :