4-2.Quadratic Equations and Inequations
normal

Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is

A

$0$

B

$2$

C

$3$

D

$5$

Solution

$\left| {x + \left| {2x – 1} \right|} \right| – \left| {x – \left| {2x – 1} \right|} \right| = 2Min\left( {x,\left| {2x – 1} \right|} \right)$

$|2 x-1|=x$

$\therefore 2 x-1=\pm x$

$x=1, \frac{1}{3}$

at $x=\frac{1}{3}$

$\mathrm{k}=\left|\frac{1}{3}+\frac{1}{3}\right|=\frac{2}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.