Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is
$0$
$2$
$3$
$5$
If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then
If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are
In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has
The number of real roots of the equation $x | x |-5| x +2|+6=0$, is
If ${x^2} + 2ax + 10 - 3a > 0$ for all $x \in R$, then