Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is
$0$
$2$
$3$
$5$
If $a, b, c \in R$ and $1$ is a root of equation $ax^2 + bx + c = 0$, then the curve y $= 4ax^2 + 3bx+ 2c, a \ne 0$ intersect $x-$ axis at
In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are
Let $[t]$ denote the greatest integer $\leq t .$ Then the equation in $x ,[ x ]^{2}+2[ x +2]-7=0$ has
Consider a three-digit number with the following properties:
$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;
$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$
Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number
The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is