- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
The number of distinct real roots of the equation $|\mathrm{x}||\mathrm{x}+2|-5|\mathrm{x}+1|-1=0$ is....................
A
$3$
B
$9$
C
$4$
D
$6$
(JEE MAIN-2024)
Solution

Case $-1$
$ x \geq 0 $
$ x^2+2 x-5 x-5-1=0 $
$ x^2-3 x-6=0 $
$ x=\frac{3 \pm \sqrt{9+24}}{2}=\frac{3 \pm \sqrt{33}}{2}$
One positive root
Case $-2$
$ -1 \leq x<0 $
$ -x^2-2 x-5 x-5-1=0 $
$ x^2+7 x+6=0 $
$ (x+6)(x+1)=0 $
$ x=-1$
one root in range
Case $-3$
$ -2 \leq x<-1 $
$ x^2-2 x+5 x+5-1=0 $
$ x^2-3 x-4=0 $
$ (x-4)(x+1)=0$
No root in range
Case $-4$
$ x<-2 $
$ x^2+7 x+4=0 $
$ x=\frac{-7 \pm \sqrt{49-16}}{2}=\frac{7 \pm \sqrt{33}}{2}$
one root in range
Total number of distinct roots are $3$
Standard 11
Mathematics