Gujarati
Hindi
4-2.Quadratic Equations and Inequations
normal

The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is

A

$4$

B

$3$

C

$2$

D

$1$

(KVPY-2009)

Solution

(a)

We have,

$x =x^2+y^2$

$\text { and } y =2 x y$

$\because y-2 x y =0$

$\Rightarrow y(1-2 x) =0$

$\Rightarrow y=0, x =\frac{1}{2}$

Put $y=0$ in Eq. (i), we get

$x =x^2+0$

$\Rightarrow x-x^2=0$

$\Rightarrow x(1-x)=0$

$\Rightarrow x=0, x=1$

$\text { Put } x=\frac{1}{2} \text { in Eq. (i), we get }$

${\frac{1}{2}=\left(\frac{1}{2}\right)^2+y^2}$

$\Rightarrow y^2=\frac{1}{2}-\frac{1}{4}$

$\Rightarrow \quad y^2=\frac{1}{4} \Rightarrow y=\pm \frac{1}{2}$

$\therefore \text { Value of }(x, y) \operatorname{are}(0,0)(0,1)$

$\left(\frac{1}{2}, \frac{1}{2}\right)\left(\frac{1}{2}, \frac{-1}{2}\right)$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.