The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is

  • [KVPY 2009]
  • A

    $4$

  • B

    $3$

  • C

    $2$

  • D

    $1$

Similar Questions

Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta  - x\,\left( {\sin \,\theta \cos \,\,\theta  + 1} \right) + \cos \,\theta  = 0\,\left( {0 < \theta  < {{45}^o}} \right)$ , and $\alpha  < \beta $.  Then $\sum\limits_{n = 0}^\infty  {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to

  • [JEE MAIN 2019]

Let $\alpha$ and $\beta$ be the two disinct roots of the equation $x^3 + 3x^2 -1 = 0.$ The equation which has $(\alpha \beta )$ as its root is equal to

Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} }  + \sqrt {x + 8 - 6\sqrt {x - 1} }  = 1$ is

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

Let $a$ , $b$ , $c$ are roots of equation $x^3 + 8x + 1 = 0$ ,then the value of 

 $\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ is equal to