The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is
$4$
$3$
$2$
$1$
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
If the sum of all the roots of the equation $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ is $\log _{ e } P$, then $p$ is equal to
The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies
Let $\alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7+$ $3 x^5-13 x^3-15 x=0$ and $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$. Then $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ is equal to $..................$.
Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?
$I$. $4$ divides $x$ or $4$ divides $y$.
$II$. $3$ divides $x+y$ or $3$ divides $x-y$.
$III$. $5$ divides $z\left(x^2-y^2\right)$.