If $|x - 2| + |x - 3| = 7$, then $x =$
$6$
$-1$
$6$ or $-1$
None of these
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are
If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then
Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for
Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,
The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -