If $|x - 2| + |x - 3| = 7$, then $x =$
$6$
$-1$
$6$ or $-1$
None of these
If $72^x \cdot 48^y=6^{x y}$, where $x$ and $y$ are non-zero rational numbers, then $x+y$ equals
If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are
If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ is equal to
Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{x}^{2}-\mathrm{x}-1=0 .$ If $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ then which one of the following statements is not true?
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is