Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
$0$
$1008$
$2015$
$2016$
If $\alpha ,\beta ,\gamma$ are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are
If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to
Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .
Let $a, b, c, d$ be real numbers such that $|a-b|=2$, $|b-c|=3,|c-d|=4$. Then, the sum of all possible values of $|a-d|$ is