Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
$0$
$1008$
$2015$
$2016$
If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2) \le 0$, then
Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:
In a cubic equation coefficient of $x^2$ is zero and remaining coefficient are real has one root $\alpha = 3 + 4\, i$ and remaining roots are $\beta$ and $\gamma$ then $\alpha \beta \gamma$ is :-
If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:
$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is