Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
$0$
$1008$
$2015$
$2016$
The number of integral values of $m$ for which the quadratic expression, $(1 + 2m)x^2 -2(1+ 3m)x + 4(1 + m),$ $x\in R,$ is always positive, is
Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........
Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :
The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be