The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is
$(2,\,3)$
$( - \infty ,\,1) \cup (2,\,3)$
$( - \infty ,\,1)$
$(1,\,3)$
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is
If the roots of ${x^2} + x + a = 0$exceed $a$, then
The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .
Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in R$, is (where $\{.\}$ denotes fractional part function)
The integer $'k'$, for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every $x$ in $R ,$ is