The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is
$(2,\,3)$
$( - \infty ,\,1) \cup (2,\,3)$
$( - \infty ,\,1)$
$(1,\,3)$
The sum of all integral values of $\mathrm{k}(\mathrm{k} \neq 0$ ) for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in $x$ has no real roots, is ..... .
If ${\log _2}x + {\log _x}2 = \frac{{10}}{3} = {\log _2}y + {\log _y}2$ and $x \ne y,$ then $x + y = $
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is
If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$
Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,