- Home
- Standard 11
- Mathematics
Suppose the quadratic polynomial $p(x)=a x^2+b x+c$ has positive coefficient $a, b, c$ such that $b-a=c-b$. If $p(x)=0$ has integer roots $\alpha$ and $\beta$ then what could be the possible value of $\alpha+\beta+\alpha \beta$ if $0 \leq \alpha+\beta+\alpha \beta \leq 8$
$3$
$5$
$7$
$14$
Solution
(c)
We have, $p(x)=a x^2+b x+c$, where $a, b, c$ are in $AP$ and $a, b, c$ are positive real.
$\alpha, \beta$ are root of $p(x)=0$, where $\alpha$ and $\beta$ are integers.
$p(x) =a x^2+b x+c=0$
$\alpha+\beta =\frac{-b}{a}, \alpha \beta=\frac{c}{a}$
$\alpha, \beta$ are integer.
$\alpha+\beta=\frac{-b}{a}=-\lambda, \lambda \in I$
$b=a \lambda$
$a, b, c$ are in $AP$
$b=\frac{a+c}{2} \Rightarrow \frac{a+c}{2}=a \lambda$
$c=a(2 \lambda-1)$
$\therefore a x^2+a \lambda x+a(2 \lambda-1) =0$
$\Rightarrow x^2+\lambda x+(2 \lambda-1) =0 \quad[\because a \neq 0]$
$D=\lambda^2-4(2 \lambda-1)$ is a perfect square for integral roots.
$\lambda^2-8 \lambda+4 =k^2$
$(\lambda-4)^2-12 =k^2$
$\Rightarrow \quad(\lambda-4-k)(\lambda-4+k)=2 \times 6$
$\Rightarrow \lambda-4-k=2$ and $\lambda-4+k=6$
$\because \lambda=8$ and $k=2$
$\therefore \quad \alpha+\beta+\alpha \beta=\frac{-b}{a}+\frac{c}{a}$
$=\frac{-a \lambda+a(2 \lambda-1)}{a}$
$=\frac{a(\lambda-1)}{a}$
$=\lambda-1=8-1=7$