Number of solutions to the system of equations $sin \frac{x+y}{2}=0$ and $|x| + |y| = 1$

  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $6$

Similar Questions

If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is

If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to

  • [KVPY 2009]

The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is

  • [IIT 2011]

The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are

If $\sin 5x + \sin 3x + \sin x = 0$, then the value of $x$ other than $0$ lying between $0 \le x \le \frac{\pi }{2}$ is