If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is

  • A

    $n\pi \pm \frac{\pi }{3}$

  • B

    $2n\pi \pm \frac{\pi }{6}$

  • C

    $n\pi \pm \frac{\pi }{6}$

  • D

    $2n\pi \pm \frac{\pi }{3}$

Similar Questions

Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.

Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to

  • [JEE MAIN 2023]

The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is

$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha  +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is

The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is