Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$
We know that, $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} .$
Thus, $\tan \left(\pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
and $\quad \tan \left(2 \pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
Thus $\quad \tan \frac{5 \pi}{6}=\tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}$
Therefore, principal solutions are $\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$ .
Number of solutions of the equation $2^x + x = 2^{sin \ x} + \sin x$ in $[0,10\pi ]$ is -
If $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ is maximum, then the value of $A$ is equal to
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are
If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is
Let $S\, = \,\left\{ {\theta \, \in \,[ - \,2\,\pi ,\,\,2\,\pi ]\, :\,2\,{{\cos }^2}\,\theta \, + \,3\,\sin \,\theta \, = \,0} \right\}$. Then the sum of the elements of $S$ is