An ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ and the parabola $x^2=4(y+b)$ are such that the two foci of the ellipse and the end points of the latusrectum of parabola are the vertices of a square. The eccentricity of the ellipse is
$\frac{1}{\sqrt{13}}$
$\frac{2}{\sqrt{13}}$
$\frac{1}{\sqrt{11}}$
$-\frac{2}{\sqrt{11}}$
A circle has the same centre as an ellipse and passes through the foci $F_1 \& F_2$ of the ellipse, such that the two curves intersect in $4$ points. Let $'P'$ be any one of their point of intersection. If the major axis of the ellipse is $17 $ and the area of the triangle $PF_1F_2$ is $30$, then the distance between the foci is :
Find the equation for the ellipse that satisfies the given conditions: Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$.
If $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ and $16{x^2} + 25{y^2} = 400$, then $P{F_1} + P{F_2}$ equals
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10$ metres and the distance between the flag-posts is $8$ metres. The area of the path he encloses in square metres is