Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

An ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ and the parabola $x^2=4(y+b)$ are such that the two foci of the ellipse and the end points of the latusrectum of parabola are the vertices of a square. The eccentricity of the ellipse is

A

$\frac{1}{\sqrt{13}}$

B

$\frac{2}{\sqrt{13}}$

C

$\frac{1}{\sqrt{11}}$

D

$-\frac{2}{\sqrt{11}}$

(KVPY-2017)

Solution

(b)

Equation of ellipse

$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b$

Equation of parabola $x^2=4(y+b)$

Foci of ellipse $(\pm a e, 0)$.

End of latusrectum of parabola

$=(\pm 2,1-b)$

$A B C D$ is a square

$A B=C D \Rightarrow 2 a e=4 \Rightarrow a e=2$

$B C=C D \Rightarrow B C^2=C D^2$

$(2-a e)^2+(1-b)^2=4^2$

$(2-a e)^2+(1-b)^2=4^2$

$0+(1-b)^2=4^2$

$1-b=\pm 4$

$b=5, b=-3 \Rightarrow a=\sqrt{29}$ or $\sqrt{13}$

$e=\sqrt{1-\frac{b^2}{a^2}}$

$e=\sqrt{1-\frac{9}{13}}=\frac{2}{\sqrt{13}}$ or $2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.