10-2. Parabola, Ellipse, Hyperbola
easy

Minimum area of the triangle by any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with the coordinate axes is

A

$\frac{{{a^2} + {b^2}}}{2}$

B

$\frac{{{{(a + b)}^2}}}{2}$

C

$ab$

D

$\frac{{{{(a - b)}^2}}}{2}$

(IIT-2005)

Solution

(c) Equation of tangent at $(a\cos \theta ,\;b\sin \theta )$ is

$\frac{x}{a}\cos \theta + \frac{y}{b}\sin \theta = 1$

$P = \left( {\frac{a}{{\cos \theta }},\,0} \right)$

$Q = \left( {0,\,\frac{b}{{\sin \theta }}} \right)$

Area of $OPQ = \frac{1}{2}\left| {\,\left( {\frac{a}{{\cos \theta }}} \right)\,\left( {\frac{b}{{\sin \theta }}} \right)\,} \right| = \frac{{ab}}{{|\sin 2\theta |}}$

 ${({\rm{Area}})_{\min }} = ab$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.