Minimum area of the triangle by any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with the coordinate axes is

  • [IIT 2005]
  • A

    $\frac{{{a^2} + {b^2}}}{2}$

  • B

    $\frac{{{{(a + b)}^2}}}{2}$

  • C

    $ab$

  • D

    $\frac{{{{(a - b)}^2}}}{2}$

Similar Questions

Area of the quadrilaterals formed by drawing tangents at the ends of latus recta of $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$

From the point$ C(0,\lambda )$ two tangents are drawn to ellipse $x^2\ +\ 2y^2\ = 4$ cutting major axis at $A$ and $B$. If  area of $\Delta$ $ABC$ is minimum, then value of $\lambda$  is-

A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10\ metres$ and the distance between the flag-posts is $8\ metres$. The area of the path he encloses in square metres is