The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is.

  • [JEE MAIN 2022]
  • A

    $\tan ^{-1}\left(\frac{16}{7 \sqrt{5}}\right)$

  • B

    $\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$

  • C

    $\tan ^{-1}\left(\frac{32}{7 \sqrt{5}}\right)$

  • D

    $\tan ^{-1}\left(\frac{3+8 \sqrt{5}}{35}\right)$

Similar Questions

If the ellipse $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the $x$-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the $y$-axis, then the eccentricity of the ellipse is

  • [JEE MAIN 2022]

If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -

The line $x =8$ is the directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with the corresponding focus $(2,0)$. If the tangent to $E$ at the point $P$ in the first quadrant passes through the point $(0,4 \sqrt{3})$ and intersects the $x$-axis at $Q$, then $(3PQ)^2$ is equal to $........$

  • [JEE MAIN 2023]

The distance between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the ellipse is

On the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ let $P$ be a point in the second quadrant such that the tangent at $\mathrm{P}$ to the ellipse is perpendicular to the line $x+2 y=0$. Let $S$ and $\mathrm{S}^{\prime}$ be the foci of the ellipse and $\mathrm{e}$ be its eccentricity. If $\mathrm{A}$ is the area of the triangle $SPS'$ then, the value of $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ is :

  • [JEE MAIN 2021]